Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38607166

RESUMO

The availability of carbon nanotube (CNT)-based polymer composites allows the development of surface-attached self-sensing crack sensors for the structural health monitoring of reinforced concrete (RC) structures. These sensors are fabricated by integrating CNTs as conductive fillers into polymer matrices such as polyurethane (PU) and can be applied by coating on RC structures before the composite hardens. The principle of crack detection is based on the electrical change characteristics of the CNT-based polymer composites when subjected to a tensile load. In this study, the electrical conductivity and electro-mechanical/environmental characterization of smart skin fabricated with various CNT concentrations were investigated. This was performed to derive the tensile strain sensitivity of the smart skin according to different CNT contents and to verify their environmental impact. The optimal CNT concentration for the crack detection sensor was determined to be 5 wt% CNT. The smart skin was applied to an RC structure to validate its effectiveness as a crack detection sensor. It successfully detected and monitored crack formation and growth in the structure. During repeated cycles of crack width variations, the smart skin also demonstrated excellent reproducibility and electrical stability in response to the progressive occurrence of cracks, thereby reinforcing the reliability of the crack detection sensor. Overall, the presented results describe the crack detection characteristics of smart skin and demonstrate its potential as a structural health monitoring (SHM) sensor.

2.
Nanomaterials (Basel) ; 13(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37570565

RESUMO

Traffic accidents caused by road icing are a serious global problem, and conventional de-icing methods like spraying chemicals have several limitations, including excessive manpower management, road damage, and environmental pollution. In this study, the carbon nanotubes reinforced de-icing coating for the road system with a self-heating function was developed as part of the development of a new system to prevent accidents caused by road icing. The electrical characteristics of the fabricated coating were analyzed, and the carbon nanotube coating heating performance experiment was conducted to measure the temperature increments by applying a voltage to the coating at a sub-zero temperature using an environmental chamber. In addition, the coating was installed on the road pavement and the applicability was investigated through a heating test in winter. As a result of the experiment, the coating made with the higher carbon nanotube concentration presented higher heating owing to its higher electrical conductivity. In addition, the coating showed sufficient heating performance, although the maximum temperature by Joule heating decreased for the entire coating at sub-zero temperatures. Finally, field tests demonstrated the potential of electrically conductive coatings for de-icing applications.

3.
BMC Neurol ; 23(1): 223, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296376

RESUMO

BACKGROUND: Butane is an aliphatic hydrocarbon used in various commercial products. While numerous reports of sudden cardiac-related deaths from butane inhalation have been described, butane-associated acute encephalopathy has rarely been reported. CASE PRESENTATION: A 38-year-old man presented with cognitive dysfunction after butane gas inhalation. Neuropsychological test results showed impairments in verbal and visual memory, and frontal executive function. Diffusion weighted MRI revealed symmetric high-signal changes in the bilateral hippocampus and globus pallidus. FDG-PET demonstrated decreased glucose metabolism in the bilateral precuneus and occipital areas and the left temporal region. At the 8-month follow-up, he showed still significant deficits in memory and frontal functions. Diffuse cortical atrophy with white matter hyperintensities and extensive glucose hypometabolism were detected on follow-up MRI and FDG-PET, respectively. Brain autopsy demonstrated necrosis and cavitary lesions in the globus pallidus. CONCLUSIONS: Only a few cases of butane encephalopathy have been reported to date. Brain lesions associated with butane encephalopathy include lesions in the bilateral thalamus, insula, putamen, and cerebellum. To the best of our knowledge, this is the first report on bilateral hippocampal and globus pallidal involvement in acute butane encephalopathy. The pathophysiology of central nervous system complications induced by butane intoxication is not yet fully understood. However, the direct toxic effects of butane or anoxic injury secondary to cardiac arrest or respiratory depression have been suggested as possible mechanisms of edematous changes in the brain after butane intoxication.


Assuntos
Encefalopatias , Fluordesoxiglucose F18 , Masculino , Humanos , Adulto , Autopsia , Neuroimagem , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Encefalopatias/induzido quimicamente , Encefalopatias/diagnóstico por imagem , Butanos , Testes Neuropsicológicos
4.
Nanomaterials (Basel) ; 12(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35889593

RESUMO

In the construction and machinery industry, heat is a major factor causing damage and destruction. The safety and efficiency of most machines and structures are greatly affected by temperature, and temperature management and control are essential. In this study, a carbon nanotube (CNT) based temperature sensing coating that can be applied to machines and structures having various structural types was fabricated, and characteristics analysis and temperature sensing performance were evaluated. The surface coating, which detects temperature through resistance change is made of a nanocomposite composed of carbon nanotubes (CNT) and epoxy (EP). We investigated the electrical properties by CNT concentration and temperature sensing performance of CNT/EP coating against static and cyclic temperatures. In addition, the applicability of the CNT/EP coating was investigated through a partially heating and cooling experiment. As a result of the experiment, the CNT/EP coating showed higher electrical conductivity as the CNT concentration increased. In addition, the CNT/EP coating exhibits high sensing performance in the high and sub-zero temperature ranges with a negative temperature coefficient of resistance. Therefore, the proposed CNT/EP coatings are promising for use as multi-functional coating materials for the detection of high and freezing temperatures.

5.
Nanomaterials (Basel) ; 11(9)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34578692

RESUMO

Exactly 50 years ago, the first article on electrochromism was published. Today electrochromic materials are highly popular in various devices. Interest in nanostructured electrochromic and nanocomposite organic/inorganic nanostructured electrochromic materials has increased in the last decade. These materials can enhance the electrochemical and electrochromic properties of devices related to them. This article describes electrochromic materials, proposes their classification and systematization for organic inorganic and nanostructured electrochromic materials, identifies their advantages and shortcomings, analyzes current tendencies in the development of nanomaterials used in electrochromic coatings (films) and their practical use in various optical devices for protection from light radiation, in particular, their use as light filters and light modulators for optoelectronic devices, as well as methods for their preparation. The modern technologies of "Smart Windows", which are based on chromogenic materials and liquid crystals, are analyzed, and their advantages and disadvantages are also given. Various types of chromogenic materials are presented, examples of which include photochromic, thermochromic and gasochromic materials, as well as the main physical effects affecting changes in their optical properties. Additionally, this study describes electrochromic technologies based on WO3 films prepared by different methods, such as electrochemical deposition, magnetron sputtering, spray pyrolysis, sol-gel, etc. An example of an electrochromic "Smart Window" based on WO3 is shown in the article. A modern analysis of electrochromic devices based on nanostructured materials used in various applications is presented. The paper discusses the causes of internal and external size effects in the process of modifying WO3 electrochromic films using nanomaterials, in particular, GO/rGO nanomaterials.

6.
Materials (Basel) ; 14(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34443175

RESUMO

The article deals with research related to the issues of nanomodification of elastomers as a basis of electric heaters with self-regulating temperature. The effect of multistage mechanical activation of multilayer carbon nanotubes (MCNTs) with graphite on the uniformity of the temperature field distribution on the surface of nanomodified organosilicon elastomer has been studied. The influence of the stages of mechanical action on the parameters of MCNTs is revealed. It has been ascertained that for the MCNTs/graphite bulk material, which has passed the stage of mechanical activation in the vortex layer apparatus, a more uniform distribution of the temperature field and an increase in temperature to 57.1 °C at the supply voltage of 100 V are typical. The distribution of the temperature field in the centrifugal paddle mixer "WF-20B" for mixing MCNTs with graphite has been investigated. It has been found that there is also a thermal effect in addition to the mechanical action on the MCNTs in the paddle mixer "WF-20B". The thermal effect is associated with the transfer of the mechanical energy of friction of the binary mixture MCNTs/graphite on the paddle and the walls of the vessel. The multiplicity of the starting current Ip to the nominal In (Ip/In) is 5 for the first sample, 7.5 for the second sample, and 10 for the third sample at the supply voltage of 100 V. The effect of reducing the starting current and stabilizing the temperature indicates the presence of self-regulation, which is expressed in maintaining a certain level of temperature.

7.
Nanomaterials (Basel) ; 10(10)2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987776

RESUMO

A novel multi-functional road surface system is designed to improve safety, the efficiency of traffic flow, and environmental sustainability for future transportation systems. The surface coating, preforming temperature detection with heating element and hydrophobic features, were fabricated with a nanocomposite consisting of carbon nanotube (CNT) modified polyurethane (PU). The CNT/PU coating showed higher electrical conductivity as well as enhanced hydrophobic properties as the CNT concentration increased. The multifunctional properties of CNT/PU coatings were investigated for use in freezing temperature sensing and heating. The CNT/PU coatings showed high temperature sensitivity in the freezing temperature range with a negative temperature coefficient of resistance. In addition, the CNT/PU coatings had excellent heating performance due to the Joule heating effect. Therefore, the proposed CNT/PU coatings are promising for use as multifunctional road coating materials for detection of freezing temperature and deicing by self-heating.

8.
Materials (Basel) ; 13(2)2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31936072

RESUMO

This paper reported the effect of high temperature on the electro-mechanical behavior of carbon nanotube (CNT) reinforced epoxy composites. CNT/epoxy composites were fabricated by dispersing CNTs in the epoxy matrix using a solution casting method. Electrical conductivity measurements obtained for the CNT/epoxy composites indicated a steadily increasing directly proportional relationship with CNT concentration with a percolation threshold at 0.25 wt %, reaching a maximum of up to 0.01 S/m at 2.00 wt % CNTs. The electro-mechanical behavior of CNT/epoxy composites were investigated at a room temperature under the static and cyclic compressive loadings, resulting that the change in resistance of CNT/epoxy composites was reduced as increasing CNT concentration with good repeatability. This is due to well-networked CNTs conducting pathways created within the solid epoxy matrix observed by scanning electron microscopy. Temperature significantly affects the electro-mechanical behavior of CNT/epoxy composites. In particular, the electro-mechanical behavior of CNT/epoxy composites below the glass transition temperature showed the similar trend with those at room temperature, whereas the electro-mechanical behavior of CNT/epoxy composites above the glass transition temperature showed an opposite change in resistance with poor repeatability due to unstable CNT network in epoxy matrix.

10.
J Clin Neurosci ; 64: 47-49, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30910549

RESUMO

The familial Creutzfeldt-Jakob disease (fCJD) usually has similar clinical and neuroimaging features as sporadic CJD (sCJD). A 57-year-old man presented with a four-month history of rapidly progressive dementia (RPD). Laboratory tests for RPD were all normal. Brain MRI demonstrated diffuse cortical atrophy and no abnormal cortical or striatal hyperintensities on fluid-attenuated inversion recovery (FLAIR)/diffusion weighted imaging (DWI). Electroencephalography revealed intermittent slow waves in the bilateral hemispheres. Cerebrospinal fluid (CSF) examination showed elevated cell counts and protein concentrations. After 10 days of empirical treatment with antiviral agents, the patient was eventually diagnosed with fCJD with M232R mutation based on the results of positivity for 14-3-3 protein, CSF PrPsc in real-time quaking-induced conversion assay and genetic test for PRNP gene. The striatal or cortical FLAIR/DWI hyperintensities are reliable radiographic markers in the diagnosis of both sCJD and fCJD. However, this case suggests that clinical work-up for CJD including genetic test is essential to do a differential diagnosis of RPD, regardless of FLAIR/DWI findings.


Assuntos
Proteínas 14-3-3/genética , Síndrome de Creutzfeldt-Jakob/diagnóstico por imagem , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/patologia , Demência/diagnóstico por imagem , Demência/genética , Demência/patologia , Imagem de Difusão por Ressonância Magnética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação
11.
Materials (Basel) ; 11(9)2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30235801

RESUMO

Joule heating is useful for fast and reliable manufacturing of conductive composite materials. In this study, we investigated the influence of Joule heating on curing conditions and material properties of polymer-based conductive composite materials consisting of carbon nanotubes (CNTs) and polydimethylsiloxane (PDMS). We applied different voltages to the CNT nanocomposites to investigate their electrical stabilization, curing temperature, and curing time. The result showed that highly conductive CNT/PDMS composites were successfully cured by Joule heating with uniform and fast heat distribution. For a 7.0 wt % CNT/PDMS composite, a high curing temperature of around 100 °C was achieved at 20 V with rapid temperature increase. The conductive nanocomposite cured by Joule heating also revealed an enhancement in mechanical properties without changing the electrical conductivities. Therefore, CNT/PDMS composites cured by Joule heating are useful for expediting the manufacturing process for particulate conductive composites in the field of flexible and large-area sensors and electronics, where fast and uniform curing is critical to their performance.

12.
Nanotechnology ; 29(32): 325502, 2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-29786618

RESUMO

We investigated the acoustic performance of electrostatic sound-generating devices consisting of bi-layer graphene on polyimide film. The total sound pressure level (SPL) of the sound generated from the devices was measured as a function of source frequency by sweeping, and frequency spectra were measured at 1/3 octave band frequencies. The relationship between various operation conditions and total SPL was determined. In addition, the effects of changing voltage level, adding a DC offset, and using two pairs of electrodes were evaluated. It should be noted that two pairs of electrode operations improved sound generation by about 10 dB over all frequency ranges compared with conventional operation. As for the sound-generating capability, total SPL was 70 dBA at 4 kHz when an AC voltage of 100 Vpp was applied with a DC offset of 100 V. Acoustic characteristics differed from other types of graphene-based sound generators, such as graphene thermoacoustic devices and graphene polyvinylidene fluoride devices. The effects of diameter and distance between electrodes were also studied, and we found that diameter greatly influenced the frequency response. We anticipate that the design information provided in this paper, in addition to describing key parameters of electrostatic sound-generating devices, will facilitate the commercial development of electrostatic sound-generating systems.

13.
Materials (Basel) ; 10(6)2017 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-28773007

RESUMO

This article presents a soft pneumatic bending actuator using a magnetically assisted bilayer composite composed of silicone polymer and ferromagnetic particles. Bilayer composites were fabricated by mixing ferromagnetic particles to a prepolymer state of silicone in a mold and asymmetrically distributed them by applying a strong non-uniform magnetic field to one side of the mold during the curing process. The biased magnetic field induces sedimentation of the ferromagnetic particles toward one side of the structure. The nonhomogeneous distribution of the particles induces bending of the structure when inflated, as a result of asymmetric stiffness of the composite. The bilayer composites were then characterized with a scanning electron microscopy and thermogravimetric analysis. The bending performance and the axial expansion of the actuator were discussed for manipulation applications in soft robotics and bioengineering. The magnetically assisted manufacturing process for the soft bending actuator is a promising technique for various applications in soft robotics.

14.
J Opt Soc Am A Opt Image Sci Vis ; 33(10): 2099-2107, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27828119

RESUMO

In this study, a method of evaluating and enhancing the visibility of graphene oxide on dielectric films was investigated. To evaluate the visibility in a multiwavelength range, we have suggested two parameters, the red, green, and blue (RGB) contrast and the RGB difference. By using these two parameters, researchers can easily determine whether the visibility comes from the color difference or from the intensity difference between the material and substrate. A high contrast image can be acquired by filtering the light source with color filters. It is predicted that the visibility of the graphene oxide monolayer may be three times as high under normal halogen light. By measurement, the visibility of graphene oxide on 70 nm Si3N4/Si increased 2.67±0.13 times under a green-filtered light. The calculated colors of graphene oxide from the RGB parameter can be effectively used to estimate the graphene oxide layer thickness and effective dielectric film thickness for high visibility graphene oxide.

15.
J Nanosci Nanotechnol ; 16(2): 1587-91, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27433626

RESUMO

The switching mechanisms of resistive random access memories (ReRAMs) were strongly related to the formation and rupture of conduction filaments (CFs) in the transition metal oxide (TMO) layer. The novel method approached to enhance the electrical characteristics of ReRAMs by introducing of the local insertion of the low-k dielectric layer inside the TMO layer. Simulation results showed that the insertion of the low-k dielectric layer in the TMO layer reduced the switching volume and the generation of CFs. The large variation of resistive switching properties was caused by the stochastic characteristics of the CFs, which was involved in switching by generation and rupture. The electrical characteristics of the novel ReRAMs exhibited a low reset current of below 20 microA, the high uniformity of the resistive switching, and the narrow variation of the resistance for the high resistance state.

16.
Materials (Basel) ; 9(4)2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-28773348

RESUMO

Given the continued challenge of dispersion, for practical purposes, it is of interest to evaluate the impact of multi-walled carbon nanotubes (MWCNTs) at different states of clustering on the eventual performance properties of cement paste. This study evaluated the clustering of MWCNTs and the resultant effect on the mechanical and electrical properties when incorporated into cement paste. Cement pastes containing different concentrations of MWCNTs (up to 0.5% by mass of cement) with/without surfactant were characterized. MWCNT clustering was assessed qualitatively in an aqueous solution through visual observation, and quantitatively in cement matrices using a scanning electron microscopy technique. Additionally, the corresponding 28-day compressive strength, tensile strength, and electrical conductivity were measured. Results showed that the use of surfactant led to a downward shift in the MWCNT clustering size distribution in the matrices of MWCNT/cement paste, indicating improved dispersion of MWCNTs. The compressive strength, tensile strength, and electrical conductivity of the composites with surfactant increased with MWCNT concentration and were higher than those without surfactant at all concentrations.

17.
Materials (Basel) ; 9(4)2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28773365

RESUMO

Multifunctional polymer-based composites have been widely used in various research and industrial applications, such as flexible and stretchable electronics and sensors and sensor-integrated smart structures. This study investigates the influence of particle coalescence on the mechanical and electrical properties of spherical nickel powder (SNP)/polydimethylsiloxane (PDMS) composites in which SNP was aligned using an external magnetic field. With the increase of the volume fraction of the SNP, the aligned SNP/PDMS composites exhibited a higher tensile strength and a lower ultimate strain. In addition, the composites with aligned SNP showed a lower percolation threshold and a higher electrical conductivity compared with those with randomly dispersed SNP. However, when the concentration of the SNP reached a certain level (40 vol. %), the anisotropy of the effective material property became less noticeable than that of the lower concentration (20 vol. %) composites due to the change of the microstructure of the particles caused by the coalescence of the particles at a high concentration. This work may provide rational methods for the fabrication of aligned composites.

18.
J Nanosci Nanotechnol ; 14(11): 8201-4, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25958500

RESUMO

The electrical properties of vertical resistive switching random access memories (VRRAMs) were investigated to enhance their device performance by using a stochastic method based on the generation and the rupture probability of the conductive filaments (CFs) together with a tunneling model. The carrier transport mechanisms were dominantly attributed to the tunneling current between the CFs and the electrode. Carrier transport mechanisms of the high resistance state current were dominantly attributed to the direct tunneling current between the electrode and the CFs locating at nearest the electrode. The simulated forming voltages of the VRRAMs were in reasonable agreement with the experimental data. The low resistance/high resistance state current ratio of the VRRAMs was improved due to an increase in the distance between the CFs and the electrode of the VRRAMs with a barrier material after a reset operation. These results can help understanding electrical characteristics and optimal structures of the VRRAMs.

19.
J Biomed Mater Res A ; 97(4): 441-50, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21484988

RESUMO

In this study, hydrophilic PLGA/Pluronic F127 scaffolds loaded with a pDNA/PEI-PEG complex were prepared to estimate their potential use as a polymeric matrix for pDNA delivery. The scaffold was fabricated by a novel precipitation/particulate leaching method. The prepared pDNA/PEI-PEG complex-loaded PLGA/Pluronic F127 scaffold exhibited a highly porous (porosity, 93-95%) and open pore structure, as well as hydrophilicity, which can provide the good environment for cell adhesion and growth. The pDNA/PEI-PEG complexes were efficiently loaded into the PLGA/Pluronic F127 scaffold and continuously released from the scaffolds up to ~90% of the initial loading amount over a period of 8 wk, which may lead to continuous gene transfection into human bone marrow mesenchymal stem cells (hBMMSCs). From the in vitro cell culture in the scaffolds for transfection, it was observed that the pDNA/PEI-PEG complex-loaded hydrophilic PLGA/Pluronic F127 scaffold has a higher transfection efficiency of the pDNA/PEI-PEG complexes into hBMMSCs than the hydrophobic PLGA ones. The cell viability associated with the pDNA/PEI-PEG complexes released from the PLGA/Pluronic F127 scaffold was not significantly different from that of the PLGA/Pluronic F127 scaffold without pDNA, indicating its low cytotoxicity, probably due to the sustained release of the pDNA/PEI-PEG complex from the scaffolds. From these results, we could suggest that the pDNA/PEI-PEG complex-loaded hydrophilic PLGA/Pluronic F127 scaffold can be an effective gene delivery system for 3D tissue formation.


Assuntos
DNA/metabolismo , Técnicas de Transferência de Genes , Interações Hidrofóbicas e Hidrofílicas , Plasmídeos/metabolismo , Tecidos Suporte/química , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Morte Celular/efeitos dos fármacos , Eletroforese em Gel de Ágar , Proteínas de Fluorescência Verde/metabolismo , Humanos , Ácido Láctico/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Poloxâmero/farmacologia , Polietilenoglicóis/farmacologia , Polietilenoimina/análogos & derivados , Polietilenoimina/farmacologia , Ácido Poliglicólico/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Porosidade/efeitos dos fármacos , Eletricidade Estática , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...